[HTML][HTML] Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm

T Okubo, BLM Hogan - Journal of biology, 2004 - Springer
T Okubo, BLM Hogan
Journal of biology, 2004Springer
Background Studies in many model systems have shown that canonical signaling through
the pathway downstream of ligands of the Wnt family can regulate multiple steps in
organogenesis, including cell proliferation, differentiation, and lineage specification. In
addition, misexpression of the Wnt-family member Wingless in Drosophila imaginal disc
cells can lead to transdetermination of progenitors from one lineage to another. Conditional
deletion of the β-catenin component of the Wnt signaling pathway has indicated a role for …
Background
Studies in many model systems have shown that canonical signaling through the pathway downstream of ligands of the Wnt family can regulate multiple steps in organogenesis, including cell proliferation, differentiation, and lineage specification. In addition, misexpression of the Wnt-family member Wingless in Drosophila imaginal disc cells can lead to transdetermination of progenitors from one lineage to another. Conditional deletion of the β-catenin component of the Wnt signaling pathway has indicated a role for Wnt signaling in mouse lung endoderm development. The full range of effects of this pathway, which includes the transcription factor Lef1, has not been explored, however.
Results
To explore this issue, we expressed a constitutively active β-catenin-Lef1 fusion protein in transgenic embryos using a lung-endoderm-specific promoter from the surfactant protein C gene. Transgenic lungs appeared grossly normal, but internally they contained highly proliferative, cuboidal epithelium lacking fully differentiated lung cell types. Unexpectedly, microarray analysis and in situ hybridization revealed a mosaic of cells expressing marker genes characteristic of intestinal Paneth and goblet cells and other non-lung secretory cell types. In addition, there was strong ectopic expression of genes such as Cdx1 and Atoh1 that normally regulate gut development and early allocation of cells to intestinal secretory lineages.
Conclusions
Our results show that hyperactive Wnt signaling in lung progenitors expressing a lung-specific gene can induce a dramatic switch in lineage commitment and the generation of intestinal cell types. We discuss the relevance of our findings to the poorly understood pathological condition of intestinal metaplasia in humans.
Springer