

Supplemental Fig. 1. Expression of the components of the BMP signaling pathway in the adult mouse esophagus. (A) Expression of the transcripts for Bmps, receptors and inhibitors in different compartments of the adult esophagus. Note that p63 is used as an epithelial marker. (B) The Bmp inhibitor Chordin is enriched in the top most layers of differentiated epithelium as detected by in situ hybridization. The boxed region is shown enlarged at right. (C) *Noggin-lacZ* is expressed in a subpopulation of muscle cells (arrows). (D) *Grem1-lacZ* is expressed in a minor population of mesenchymal cells in the lamina propria and muscle cells (arrows). The boxed region is shown enlarged at right. Abbreviations: Mu, muscle; LP, lamina propria; Ep1, epithelium batch 1; Ep2, epithelium batch 2; Ep, epithelium; Me, mesenchyme. Scale bar: 50µm.

Supplemental Fig. 2. Bmp4-treatment inhibits the proliferation and promotes the squamous differentiation of the esophageal epithelial progenitor cells. (A-B) Primary mouse basal progenitor cells expand in vitro and maintain undifferentiated state (p63+ve). (C) Spheres formed from single mouse basal progenitor cells are smaller in the presence of Bmp4 than in PBS control. (D) Bmp4 treatment promotes the squamous differentiation of human basal cell-like EPC2 cells. (E-F) Bmp4 treatment inhibits the proliferation of EPC2 cells (n=3). (G-I) Bmp4 treatment does not promote the columnar differentiation of EPC2 cells. Note that CPA cells stained with Krt8 and Cdx2 were used as positive controls. Data are represented as mean \pm SEM. **P*<0.05 by Student's t test. Scale bar: 50µm.

Supplemental Fig. 3. Activation of BMP signaling does not promote the columnar differentiation of the mouse esophageal epithelium. (A-B) Schematic illustration conditional for overexpression of constitutively active Bmpr1a (caBmpr1a). Four tamoxifen injections were performed every other day and the animals were examined one week after the final injection. (C-E) Activation of BMP signaling does not promote the columnar differentiation of the esophageal epithelium as shown by Krt8 and Cdx2 staining. Intestinal epithelial sections stained with Krt8 and Cdx2 were used as positive controls. Scale bar: 50µm.

Supplemental Fig. 4. Quantification of protein levels of Involucrin and Loricrin in response to Nrf2 or Keap1 overexpression in the presence or absence of 10ng/ml Bmp4. Nrf2 overexpression significantly increases the protein levels of Involucrin (A) and Loricrin (B) in human EPC2 cells. In contrast, overexpression of Keap1, the inhibitor of Nrf2 maintains low levels of Involucrin (A) and Loricrin (B) in the presence of Bmp4. The quantification results were generated from three individual experiments. Data are represented as mean \pm SEM. **P*<0.05 by 2-way ANOVA.

Supplemental Fig. 5. Examination of basal cell hyperplasia in a mouse model of EoE and human EoE biopsy. (A) Scheme for generating *Krt5-rtTA; otet-IL-13* mutants in which IL-13 is specifically expressed in basal cells upon feeding doxycycline water. (B) The transcript levels of IL-13 are increased in *Krt5-rtTA; otet-IL-13* mutants (n=5). (C) The transcript levels of Eotaxin-1, a downstream mediator of IL-13 are significantly increased in *Krt5-rtTA; otet-IL-13* mutants (n=5). (D) Proliferation of basal cells is significantly increased upon IL-13 overexpression indicated by increased Ki67+ cells (n=5). Data are represented as mean \pm SEM. **P*<0.001, *****P*<0.001 by Student's t test.

Supplemental Table 1

Fold changes in the activity of 45 signaling pathways included in the Cignal Finder 45-pathway Reporter Array.

Signaling pathway	Transcription factor	Fold change (Log₂)
Vitamin D	VDR	3.57*
KLF4	KLF4	3.41*
SP1	SP1	2.11*
Antioxidant response	NRF2	1.88*
MEF2	MEF2	1.75*
Amino Acid Deprivation	ATF2/3/4	1.64*
Retinoic Acid	RAR	1.28*
Type Interferon	STAT1/2	1.20*
NOTCH	RBP-Jk	1.18*
MAPK/ERK	SRF/Elk-1	1.14*
Interferon Regulation	IRF1	1.13*
Glucocorticoid	GR	0.91*
HNF4	HNF4	0.58
STAT3	STAT3	0.56
GATA	GATA	0.39
ER Stress	CBF/NF-Y/YY1	0.35
Мус	с-Мус	0.35
Wnt	TCF/LEF	0.33
NFkB	NFkB	0.24
Sox2	Sox2	0.21
Retinoid X	RXR	0.09
Cell Cycle	E2F	0.09
Pax6	Pax6	0.01
ATF6	ATF6	0.01
Heavy Metal	MTF-1	-0.01
Liver X	LXR	-0.05
cAMP/PKA	CREB	-0.05
Androgen	AR	-0.12
Heat Shock	HSF-1	-0.16
Interferon Gamma	STAT1	-0.18
MAPK/Jnk	AP-1	-0.28
TGFbeta	SMAD2/3/4	-0.30
Xenobiotic	AhR	-0.42
EGR1	EGR1	-0.75*
DNA Damage	p53	-0.82*
Нурохіа	HIF-1a	-1.06*
PI3K/Akt	FOXO	-1.12*
PKC/Ca++	NFAT	-1.12*
Estrogen	ER	-1.22*
Nanog	Nanog	-1.26*

PPAR	PPAR	-1.38*
Oct4	Oct4	-1.40*
C/EBP	C/EBP	-1.45*
Progesterone	PR	-1.54*
Hedgehog	Gli	-1.72*

*Statistically significant: P < 0.05, n=3.

Supplemental Table 2

Primer sets used for regular and real-time RT-PCR.

Reverse Transcriptional PCR Primers:		
Mouse p63 Forward	GTCAGCCACCTGGACGTATT	
Mouse p63 Reverse	ACCTGTGGTGGCTCATAAGG	
Mouse Alk2 Forward	CCAGAGGAACAAAGGAGCTG	
Mouse Alk2 Reverse	AGCTGTACCTTCTCCCAGCA	
Mouse Alk3 Forward	AGGTCAAAGCTGTTCGGAGA	
Mouse Alk3 Reverse	CTGTACACGGCCCTTTGAAT	
Mouse Alk6 Forward	GTACTGCAGGGCCACAATTT	
Mouse Alk6 Reverse	TCTTCCAGGCTCAGGTGACT	
Mouse Bmpr2 Forward	GGGAGCACGTGTTATGGTCT	
Mouse Bmpr2 Reverse	CAGAAACTGATGCCAAAGCA	
Mouse Bmp3 Forward	TGCTGTGGCTCTATGACAGG	
Mouse Bmp3 Reverse	CTCTGAGTGTGATGGGAGCA	
Mouse Fstl1 Forward	CCTGTGTGTGGCAGTAATGG	
Mouse Fstl1 Reverse	TGGTGATGTTGATGGCTGTT	
Mouse Grem2 Forward	CCTGTCATTCACAGAGAGGA	
Mouse Grem2 Reverse	CATTCGAGCTCTACGATGAC	
Mouse Gapdh Forward	TGTTCCTACCCCCAATGTGT	
Mouse Gapdh Reverse	TGTGAGGGAGATGCTCAGTG	
Real-Time PCR Primers:		
Human NRF2 Forward	CAAAAGGAGCAAGAGAAAGCC	
Human NRF2 Reverse	TCTGATTTGGGAATGTGGGC	
Human NQO1 Forward	TCACCGAGAGCCTAGTTCC	
Human NQO1 Reverse	TCATGGCATAGTTGAAGGACG	
Human Involucrin Forward	TCCAAGACATTCAACCAGCC	
Human Involucrin Reverse	CTTGTATGAGACGATCTGAGGG	
Human β-Actin Forward	GCTCGTCGTCGACAACGGCTC	
Human β-Actin Reverse	CAAACATGATCTGGGTCATCTTCTC	
Human IL-13 Forward	CATTGCTCTCACTTGCCTTG	
Human IL-13 Reverse	TGATGCTCCATACCATGCTG	
Human Eotaxin-3 Forward	GAGTGACATATCCAAGACCTGC	
Human Eotaxin-3 Reverse	GGGTACAGACTTTCTTGCCTC	
Human Follistatin Forward	GAAGTCCAGTACCAAGGCAG	
Human Follistatin Reverse	TGGGCAAATCCGATTACAGG	
Human NOX2 Forward	CCAGTGAAGATGTGTTCAGCT	
Human NOX2 Reverse	GCACAGCCAGTAGAAGTAGAT	
Human NOX4 Forward	TCACAGAAGGTTCCAAGCAG	
Human NOX4 Reverse	ACTGAGAAGTTGAGGGCATTC	
Human NOX5 Forward	TGTTCATCTGCTCCAGTTCC	
Human NOX5 Reverse	ACAAGATTCCAGGCACCAG	
Human GCLC Forward	GGCACAAGGACGTTCTCAAGT	
Human GCLC Reverse	CAGACAGGACCAACCGGAC	

Human GSTP1 Forward	TGCTAGAGATGACTCGGAAGG
Human GSTP1 Reverse	TGCTAGAGATGACTCGGAAGG
Mouse IL-13 Forward	CAGCTCCCTGGTTCTCTCAC
Mouse IL-13 Reverse	CCACACTCCATACCATGCTG
Mouse Eotaxin-1 Forward	CCCAACACACTACTGAAGAGCTACAA
Mouse Eotaxin-1 Reverse	TTTGCCCAACCTGGTCTTG
Mouse Follistatin Forward	AGAGGTCGCTGCTCTCTCTG
Mouse Follistatin Reverse	AGCTTCCTTCATGGCACACT
Mouse Nrf2 Forward	TCCCATTTGTAGATGACCATGAG
Mouse Nrf2 Reverse	CCATGTCCTGCTCTATGCTG
Mouse Nqo1 Forward	AGGATGGGAGGTACTCGAATC
Mouse Nqo1 Reverse	TGCTAGAGATGACTCGGAAGG
Mouse Involucrin Forward	AATTGGAGAACCGGACACAG
Mouse Involucrin Reverse	GTTTTGGCTTCACTGCACTTC
Mouse Loricrin Forward	ACATCAGCATCACCTCCTTC
Mouse Loricrin Reverse	TCTTTCCACAACCCACAGG
Mouse Gclc Forward	CTACCACGCAGTCAAGGACC
Mouse Gclc Reverse	CCTCCATTCAGTAACAACTGGAC
Mouse Gstp1 Forward	ATGCCACCATACACCATTGTC
Mouse Gstp1 Reverse	GGGAGCTGCCCATACAGAC