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Pneumococcal meningitis is the most common and severe form of bacterial meningitis. Fatality rates are sub-
stantial, and long-term sequelae develop in about half of survivors. Disease outcome has been related to the 
severity of the proinflammatory response in the subarachnoid space. The complement system, which mediates 
key inflammatory processes, has been implicated as a modulator of pneumococcal meningitis disease severity 
in animal studies. Additionally, SNPs in genes encoding complement pathway proteins have been linked to 
susceptibility to pneumococcal infection, although no associations with disease severity or outcome have been 
established. Here, we have performed a robust prospective nationwide genetic association study in patients 
with bacterial meningitis and found that a common nonsynonymous complement component 5 (C5) SNP 
(rs17611) is associated with unfavorable disease outcome. C5 fragment levels in cerebrospinal fluid (CSF) of 
patients with bacterial meningitis correlated with several clinical indicators of poor prognosis. Consistent with 
these human data, C5a receptor–deficient mice with pneumococcal meningitis had lower CSF wbc counts and 
decreased brain damage compared with WT mice. Adjuvant treatment with C5-specific monoclonal antibodies 
prevented death in all mice with pneumococcal meningitis. Thus, our results suggest C5-specific monoclonal 
antibodies could be a promising new antiinflammatory adjuvant therapy for pneumococcal meningitis.

Introduction
Community-acquired bacterial meningitis continues to exact a 
heavy toll, even in developed countries, despite the implementa-
tion of childhood vaccination programs and effective antimicro-
bial agents (1, 2). The most common etiologic agents of bacterial 
meningitis are Streptococcus pneumoniae and Neisseria meningitidis, 
with the first bacterium responsible for two-thirds of cases in 
Europe and the United States (1). The fatality rates in patients 
with meningitis caused by these microorganisms are substantial, 
at 26% and 9%, respectively (3), and long-term sequelae, including 
hearing loss, focal neurological deficit, and cognitive impairment, 
develop in about half of survivors (1).

Experimental animal models have shown that outcome in bac-
terial meningitis is related to the severity of inflammation in the 
subarachnoid space, and it was suggested that outcome could be 
improved by modulation of the inflammatory response, for exam-
ple, with dexamethasone (4). Many randomized clinical trials of 
dexamethasone in bacterial meningitis have been performed, but 
results have remained ambiguous (5–8). An individual patient data 
meta-analysis of 5 large recent trials showed no effect of dexameth-
asone (7). A prospective cohort study showed a decrease in mortal-
ity from 30% to 20% in adults with pneumococcal meningitis after 

nationwide implementation of dexamethasone in the Netherlands 
(9). New adjunctive therapies are needed to improve the prognosis 
of bacterial meningitis.

Genetic association studies may reveal new targets for adjuvant 
therapies (10). Genetic defects in the complement system have been 
studied in patients with extreme phenotypes of meningitis, particu-
larly those with familial or recurrent disease, focusing on suscepti-
bility to invasive pneumococcal and meningococcal disease (11). 
The complement system can be divided into 3 activation pathways 
(the classical, lectin, and alternative pathways), which all converge 
on a common terminal pathway (12). An essential step in the clas-
sical and lectin pathways is cleavage of complement component C2 
into its fragments, C2a and C2b. A retrospective study, including 
40,000 patients with suspected complement deficiency, identified 
40 individuals with C2 deficiency due to a 28-bp deletion (13). A 
history of invasive infections, mainly pneumococcal infections, 
was found in 23 (58%) of these individuals (13). The formation of 
the alternative pathway C3 convertase complex (C3bBb) is a crucial 
step in the alternative pathway and requires complement factor D 
(fD) (12). fD deficiency due to uncommon SNPs has been described 
in cases and families with meningococcal and pneumococcal infec-
tions (14, 15). C3bBb is stabilized by properdin (16), and properdin 
deficiency predisposes to meningococcal disease due to serogroups 
W135 and Y; one-third of patients with meningococcal disease 
caused by these serotypes are properdin deficient. The common 
terminal pathway consists of complement components C5–C9, 
and activation forms the anaphylatoxin C5a, a strong proinflam-
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matory mediator, and the membrane attack complex (MAC), which 
creates pores in the bacterial cell wall (12). Deficiencies in these late 
complement components have been recognized as a cause of recur-
rent and familial meningococcal infections.

Case-control studies subsequently assessed the effect of SNPs in 
complement genes on susceptibility to pneumococcal and menin-
gococcal disease in the general population (11). A meta-analysis of 
studies on 3 SNPs in mannose-binding lectin showed an association 
of homozygosity for variant alleles with pneumococcal invasive dis-
ease (odds ratio [OR], 2.58; 95% CI, 1.38–4.80) (11). This soluble pat-
tern recognition molecule activates the lectin pathway upon bind-
ing to microorganisms (12). Factor H (fH) regulates the alternative 
pathway by inactivating C3bBb (12). The fH –496C/C genotype 
was found to be associated with meningococcal disease (OR, 2.0; 

95% CI, 1.3–3.2) (17). Most of the candidate gene approach studies 
lacked power to detect true associations (11). Recently, a genome-
wide association study (GWAS) on host susceptibility to menin-
gococcal disease identified a locus in the complement factor H  
(CFH) region, providing the first convincing evidence for a role 
of SNPs in complement genes in susceptibility to infections (18). 
Little is known about the role of complement SNPs in bacterial 
meningitis, and so far no associations with disease severity or out-
come have been reported in case-control studies for complement 
SNPs or GWAS (11).

Studies in animal models have provided evidence for involve-
ment of the complement system in modulating severity of pneu-
mococcal meningitis. In rabbits depleted of C3 by administering 
cobra venom factor, intracisternal inoculation of S. pneumoniae 
resulted in higher bacterial titers in the cerebrospinal fluid (CSF) 
than in complement-sufficient control animals (19). Other stud-
ies showed an increased pneumococcal outgrowth in the brain 
and blood in gene-targeted mice lacking C1q, affecting only the 
classical pathway; C3, affecting all complement activation path-
ways; or the receptor for the opsonin C3b/iC3b (CR3) (20, 21). C3 
deficiency led to diminished brain inflammation, paralleled by 
an attenuation of intracranial complications. However, the lack 
of CR3-mediated opsonophagocytosis resulted in increased bac-
teremia that worsened outcome. These data provide evidence that 
the complement system is important in bacterial meningitis and 
that antagonizing the detrimental proinflammatory effects of the 
complement system without inhibiting its antimicrobial activity 
might be a promising adjuvant therapy option.

We performed a prospective nationwide genetic association 
study in patients with community-acquired bacterial meningitis 
to investigate the roles of common genetic variants in the comple-
ment system in outcome. By analyzing clinical data and CSF, we 
identified the potential impact and functionality of a SNP that 
was associated with outcome. We than validated and explored 
our findings in an animal model of pneumococcal meningitis 
and investigated whether adjuvant treatment with a monoclonal 
antibody targeted against this specific complement component 
could improve outcome.

Results
Nationwide prospective cohort study of adults with community-acquired 
bacterial meningitis. In a prospective nationwide cohort study, we 
included 642 out of 762 (84%) identified episodes of community-
acquired CSF culture-proven bacterial meningitis in 636 patients. 
The distribution of causative bacteria was S. pneumoniae in 468 
(73%), N. meningitidis in 80 (13%), and other bacteria in 94 (15%) 
episodes. DNA samples were obtained from 439 patients (68%) 
and 302 controls. Controls were patients’ partners or nonrelated 
proxies living in the same dwelling, as household members they 
had similar exposure to bacteria through nasopharyngeal coloni-
zation, and were matched for age, ethnicity, and sex (ref. 22 and 
Supplemental Table 1; supplemental material available online with 
this article; doi:10.1172/JCI57522DS1). Predisposing conditions, 
most commonly otitis media or sinusitis (36%) and immunocom-
promised state (22%), were present in 58% of episodes (Table 1). In 
13% of episodes, patients were comatose on admission, and 32% 
of the episodes had focal neurologic deficits. The case fatality rate 
was 8%, and 24% of the episodes had an unfavorable outcome, 
defined as a score of 1 through 4 on the Glasgow Outcome Scale 
(GOS) (23). Patients for whom DNA was obtained were on average 

Table 1
Clinical characteristics of 439 patients with community-acquired 
bacterial meningitisA

Characteristic	 Value/total
Age (yr)	 56 ± 18
Male sex (no. [%])	 208 (47%)
Duration of symptoms <24 h	 200/436 (46%)
Pretreatment with antibiotics	 51/433 (12%)
Predisposing conditions	 253/436 (58%)
	 Otitis or sinusitis	 156/436 (36%)
	 Pneumonia	 57/436 (13%)
	 Immunocompromise	 96/436 (22%)
Symptoms and signs on presentationB	
	 Headache	 304/394 (86%)
	 Neck stiffness	 325/421 (77%)
	 Systolic blood pressure (mmHg)	 145 ± 29
	 Heart rate (bpm)	 99 ± 21
	 Body temperature (°C)	 38.7 ± 1.3
Score on Glasgow Coma ScaleC	 11 ± 3
	 <8 indicating coma	 58/434 (13%)
Focal neurologic deficits	 140/436 (32%)
Indexes of CSF inflammationD

	 Opening pressure (mmH2O)	 387 ± 126
	 wbc count (/mm3)	 6,708 ± 11,964
	 wbc count < 1,000/mm3	 116/409 (28%)
	 Protein (g/l)	 4.3 ± 3.1
	 CSF blood glucose ratio	 0.15 ± 0.16
Positive blood cultures	 273/365 (75%)
Complications	
	 Cardiorespiratory failure	 118/420 (28%)
	 Focal neurologic deficits	 86/425 (20%)
	 Cerebral infarction	 50/436 (11%)
Score on GOS	
	 1 – death	 35/435 (8%)
	 2 – vegetative state	 1/435 (0.2%)
	 3 – severe disability	 15/435 (3%)
	 4 – moderate disability	 55/435 (13%)
	 5 – good recovery	 329/435 (76%)

AData are number/number evaluated (percentage), and continuous 
data are mean ± SD. BSystolic blood pressure was evaluated in 426 
patients, heart rate was evaluated in 421 patients, and temperature was 
evaluated in 432 patients. CScore on the Glasgow Coma Scale was 
evaluated in 434 patients. DCSF opening pressure was evaluated in 151 
patients, CSF wbc count was evaluated in 409 patients, CSF protein 
was evaluated in 412 patients, and CSF blood glucose ratio was evalu-
ated in 408 patients. 
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younger and presented with less severe disease than patients for 
whom DNA was not obtained (Supplemental Table 2).

Genetic association study on common variants in the complement system. 
We selected all SNPs with a minor allele frequency of more than 5% 
in genes coding for complement components (C1QA, C1QB, C1QC, 
C2, C3, C5, C6, C7, C8B, C9, CFD, CFH, CFI, and CFP) for which a 
commercial genotyping assay was available. A total of 17 SNPs were 
genotyped using TaqMan SNP Genotyping Assays (Applied Bio-
systems). The genotyping success rate was more than 95% for all 
assays. In 16 out of 17 assays, genotype frequency of controls of 
mixed European descent concurred with the Hardy-Weinberg equi-
librium (HWE; Supplemental Table 3). We compared the genotype 
frequency of patients with a favorable outcome, defined as a GOS 
score of 5, indicating mild or no disability, with that of patients with 
an unfavorable outcome. Using a Bonferroni correction for mul-
tiple testing, we identified rs17611 in complement component 5  
(C5; GG genotype) to be associated with unfavorable outcome in 
patients of mixed European descent with pneumococcal meningi-
tis (OR, 2.25; 95% CI, 1.33–3.81; P = 0.002). In a multivariate regres-
sion analysis, including previously identified important risk factors 
for unfavorable outcome (age, CSF wbc count < 1,000/mm3, score 
on the Glasgow Coma Scale, blood thrombocyte count, immuno-
compromise, otitis media, and/or sinusitis) (3), the predictive effect 
of rs17611 remained robust (OR, 1.92; 95% CI, 1.09–3.26; P = 0.032; 
Supplemental Table 4). Other SNPs frequencies were similar in 
patients with unfavorable and favorable outcome (Tables 2 and 3).

Complement in CSF of adults with bacterial meningitis. C5-convertase 
cleaves C5 into the anaphylatoxin C5a and fragment C5b. When 
C5b associates with C6 and C7, the complex becomes inserted into 
bacterial membranes and interacts with C8, permitting the bind-
ing of several copies of C9 to form the MAC (12). To explore the 
role of C5 in patients with bacterial meningitis, we measured CSF 
levels of C5a and terminal complement complex (TCC; sC5b-9) in 

the CSF of 204 out of 642 episodes, using the Quidel Microvue 
C5a and sC5b-9 ELISA Kits. Baseline characteristics and outcome 
were similar for patients with CSF available as compared with those 
of patients without CSF available. C5a and TCC levels were cor-
related with Glasgow Coma Scale scores on admission, death, and 
unfavorable outcome (Figure 1). Higher levels of C5a and TCC pre-
dicted increased parameters of CSF inflammation. There was no 
significant association between CSF C5a or TCC levels and rs17611 
genotypes (C5a, 8.7 ng/ml [interquartile range, IQR, 2.0–43] in 
rs17611A vs. 16 ng/ml [IQR, 4.0–64] in rs17611GG, P = 0.29; TCC, 
2.0 μg/ml [IQR, 0.3–4.4] in rs17611A vs. 2.3 μg/ml [IQR, 0.5–5.5] 
in rs17611GG, P = 0.50). Patients with pneumococcal meningitis 
with the rs17611 GG genotype had lower CSF wbc counts (2,185 
per mm3 [IQR, 375–7,738] vs. 3,956 per mm3 [IQR, 998–9,365];  
P = 0.036) but similar CSF protein and CSF glucose levels, as com-
pared with those of patients with AA or AG alleles. Lower CSF 
wbc counts have been reported to predict unfavorable outcome 
in patients with community-acquired bacterial meningitis (3, 24). 
To obtain insight into the functional role of terminal complement 
components in bacterial meningitis, we next performed experi-
ments using a mouse model of pneumococcal meningitis (25).

Expression profile of C5a and the TCC C5b-9 in the mouse model of 
pneumococcal meningitis. To confirm that C5a and the TCC are 
expressed in the meningitis mouse model, we examined mouse 
brain homogenates from WT mice infected with S. pneumoniae. At 
24 and 48 hours after infection, C5a and TCC levels were increased 
(Figure 2, A and B). Immunohistochemical staining was positive 
for C5a and TCC in and around inflammatory infiltrates in brains 
of infected mice (Figure 2, C and D). TCC expression was also 
detected in cortical vessels (Figure 2D).

Functional analysis of C5a, MAC, and C3 in the mouse model of pneu-
mococcal meningitis. Next, we examined the functional role of the 
anaphylatoxins, C5a and C3a, and MAC in our mouse model using 

Table 2
Genotyping analysis of 17 common complement component polymorphisms in 329 patients with bacterial meningitis with favorable  
outcome and 105 with unfavorable outcome

Gene	 SNP 	 Favorable outcome	 Unfavorable outcome	 Risk allele 	 OR	 P
	 ID	 A	 B	 AA	 AB	 BB	 A	 B	 AA	 AB	 BB	 or genotype	 (95% CI)	
C3	 rs1047286	 543	 111	 218	 107	 2	 169	 37	 69	 31	 3	 BB	 4.88 (0.80–29.6)	 0.092
C3	 rs2230199	 539	 115	 218	 103	 6	 171	 33	 73	 25	 4	 BB	 2.18 (0.60–7.90)	 0.223
C5	 rs17611	 292	 366	 65	 162	 102	 77	 131	 18	 41	 45	 BB	 1.70 (1.08–2.67)	 0.021
C6	 rs1801033	 422	 232	 140	 142	 45	 137	 67	 45	 47	 10	 A	 1.47 (0.71–3.03)	 0.297
C7	 rs1063499	 257	 401	 57	 143	 129	 90	 114	 23	 44	 35	 AA	 1.39 (0.81–2.40)	 0.236
C7	 rs13157656	 174	 472	 12	 150	 161	 49	 151	 5	 39	 56	 BB	 1.28 (0.82–2.01)	 0.282
C7	 rs60714178	 91	 565	 8	 75	 245	 34	 176	 5	 24	 76	 AA	 2.00 (0.64–6.25)	 0.225
C8BA	 rs12067507	 35	 621	 8	 19	 301	 21	 185	 7	 7	 89	 AA	 2.92 (1.03–8.26)	 0.035
C8B	 rs12085435	 624	 28	 298	 28	 0	 185	 17	 86	 13	 2	 BB	 1.02 (0.99–1.05)	 0.056
C9	 rs700233	 386	 250	 114	 158	 46	 110	 78	 32	 46	 16	 BB	 1.21 (0.65–2.26)	 0.543
C9	 rs34882957	 607	 49	 281	 45	 2	 192	 10	 91	 10	 0	 AA	 1.52 (0.74–3.13)	 0.252
CFH	 rs505102	 456	 198	 161	 134	 32	 145	 59	 52	 41	 9	 A	 1.12 (0.52–2.43)	 0.773
CFH	 rs1065489	 107	 549	 16	 75	 237	 38	 168	 6	 26	 71	 A	 1.17 (0.72–1.90)	 0.515
CFH	 rs1410996	 350	 308	 92	 166	 71	 111	 95	 31	 49	 23	 AA	 1.11 (0.68–1.80)	 0.675
CFH	 rs3753396	 100	 558	 8	 84	 237	 32	 174	 2	 28	 73	 B	 1.26 (0.26–6.02)	 0.560
CFH	 rs6677604	 513	 143	 197	 119	 12	 163	 43	 64	 35	 4	 AA	 1.09 (0.69–1.72)	 0.707
CFH	 rs3753394	 155	 503	 20	 115	 194	 64	 142	 13	 38	 52	 AA	 2.23 (1.07–4.65)	 0.029
CFH	 rs1061170	 434	 224	 148	 138	 43	 137	 73	 50	 37	 18	 BB	 1.38 (0.76–2.51)	 0.296

For favorable and unfavorable outcome, the number of patients in each allele or genotype is listed. AControl population did not comply with HWE.
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different mutants. Components of the complement system are 
known to modulate inflammatory responses (12, 26).

First, we compared mice with a deficiency of the C5a receptor 
(C5ar1–/– mice) to WT mice. CSF wbc count in infected C5ar1–/–  
mice was decreased to 25% of that in WT mice (Figure 3). The 
reduced inflammatory response in C5ar1–/– mice was associated 
with better clinical status (clinical score shown in Figure 3), with 
less severe hypothermia, reduced weight loss, and conserved 
exploratory behavior in the open-field test (OFT) (C5ar1–/– vs. WT, 
body temperature, 37.3°C ± 0.42°C vs. 36.6°C ± 0.54°C, P = 0.004;  
weight loss, 11.1% ± 1.58% vs. 13.3% ± 2.38%, P = 0.031; OFT,  
23 ± 22 fields vs. 3 ± 4 fields, P = 0.019).

A strong granulocytic inflammatory response contributes sub-
stantially to neuropathology in pneumococcal meningitis (27); 
this was supported by our finding that granulocyte depletion was 
protective against meningitis-related brain damage (Supplemen-
tal Figure 1). Therefore, we evaluated major meningitis-associ-
ated intracranial complications in our model: raised intracranial 
pressure (ICP), decreased blood-brain barrier (BBB) integrity, 
and intracerebral hemorrhages. BBB breakdown (brain albumin 
content) was combined with the number of intracerebral hem-
orrhages to obtain the neuroscore, as described previously (25). 
C5ar1–/– mice had reduced ICP and lower neuroscores when com-
pared with those of WT mice (Figure 3). There was no difference 
in cerebellar bacterial titers (6.58 ± 0.59 log10 CFUs/cerebellum in 
WT mice vs. 6.15 ± 0.73 log10 CFU/cerebellum in C5ar1–/– mice) or 
mortality rate (0 out of 10 vs. 0 out of 9 for WT vs. C5ar1–/– mice) 
between C5ar1–/– and WT mice. The altered recruitment of CSF 
inflammatory cells in C5ar1–/– mice prompted us to analyze the 
levels of cytokines and inflammatory mediators in mouse brain 
homogenates. Amounts of IL-6 (data not shown), CXCL1/KC, and 
CXCL2/MIP-2 were all reduced in infected C5ar1–/– mice compared 
with those in infected WT mice (Figure 3).

In order to evaluate whether the decreased CSF wbc count 
observed in the C5ar1–/– mice was mediated through chemokine 
regulation by C5a, infected animals were treated with anti-CXCL2/
MIP-2 antibodies, either alone or in combination with anti-CXCL1/
KC antibodies. Treatment with anti-CXCL2/MIP-2 antibodies 
alone reduced CSF wbc count by 40% (not significant), whereas, 
when combined with anti-CXCL1, treatment caused a reduction of 
CSF wbc count by 63% (P = 0.003). The animals treated with both 
CXCL1 and CXCL2 antibodies were in a better clinical state com-
pared with that of the untreated mice (Supplemental Table 5).

To analyze the role of the MAC, we investigated mice with a 
mutation in the complement component 6 gene (C6–/– mice), 
which are unable to form the MAC, and mice gene deleted for 
CD59 (Cd59a–/– mice), the in vivo inhibitor of the MAC (12). C6–/–  
mice with pneumococcal meningitis tended to have lower CSF 
wbc counts as compared with those of WT mice (Supplemental 
Figure 2), whereas Cd59a–/– mice had increased CSF wbc counts 
compared with those of WT animals (Supplemental Figure 3). No 
differences were detected between C6–/–, Cd59a–/–, and WT mice in 
clinical scores, ICP, or neuroscores (Supplemental Figure 3). How-
ever, the mortality rate among C6–/– mice was higher (7 out of 14 
[50%]) compared with that of Cd59a–/– mice (2 out of 11 [18%]) 
and WT mice (2 out of 20 [10%]). This difference was attributable 
to a more severe damage of the BBB in C6–/– mice compared with 
that of WT mice (brain albumin content, 487.0 ± 287.7 ng/μg vs.  
242.7 ± 178.0 ng/μg, P = 0.014). Levels of IL-6 and CXCL2/MIP-2 
were similar among the 3 mouse strains.

We next investigated the role of C3a in pneumococcal menin-
gitis. The anaphylatoxin C3a has been shown to be involved in 
immune regulation of inflammatory CNS diseases (28), and we 
previously described increased expression of the C3a receptor in 
mice with pneumococcal meningitis (21). Mice deficient in the 
C3a receptor (C3ar1–/– mice) and mice expressing C3a exclusively  

Table 3
Genotyping analysis of 17 common complement component polymorphisms in 217 patients of mixed European descent with pneumococcal 
meningitis with favorable outcome and 83 with unfavorable outcome

Gene	 SNP	 Favorable outcome	 Unfavorable outcome	 Risk allele 	 OR 	 P 
	 ID	 A	 B	 AA	 AB	 BB	 A	 B	 AA	 AB	 BB	 or genotype	 (95% CI)	
C3	 rs1047286	 354	 76	 141	 72	 2	 127	 33	 50	 27	 3	 BB	 4.15 (0.68–25.3)	 0.125
C3	 rs2230199	 348	 82	 138	 72	 5	 129	 29	 54	 21	 4	 BB	 2.24 (0.59–8.56)	 0.227
C5	 rs17611	 197	 235	 43	 111	 62	 57	 107	 14	 29	 39	 BB	 2.25 (1.33–3.81)	 0.002
C6	 rs1801033	 276	 154	 90	 96	 29	 107	 51	 36	 35	 8	 A	 1.40 (0.61–3.19)	 0.429
C7	 rs1063499	 174	 258	 38	 98	 80	 72	 86	 20	 32	 27	 AA	 1.57 (0.85–2.91)	 0.149
C7	 rs13157656	 115	 305	 6	 103	 101	 41	 117	 5	 31	 43	 BB	 1.30 (0.77–2.19)	 0.320
C7	 rs60714178	 59	 373	 6	 47	 163	 28	 136	 5	 18	 59	 AA	 2.25 (0.67–7.58)	 0.179
C8BA	 rs12067507	 26	 404	 7	 12	 196	 14	 146	 5	 4	 71	 AA	 1.96 (0.61–6.37)	 0.253
C8B	 rs12085435	 402	 20	 191	 20	 0	 144	 12	 68	 8	 2	 BB	 1.03 (0.99–1.06)	 0.073
C9	 rs700233	 254	 160	 73	 108	 26	 87	 57	 25	 37	 10	 BB	 1.11 (0.51–2.43	 0.792
C9	 rs34882957	 403	 27	 189	 25	 1	 151	 7	 72	 7	 0	 AA	 1.43 (0.59–3.44)	 0.425
CFH	 rs505102	 291	 137	 100	 91	 23	 109	 49	 37	 35	 7	 A	 1.08 (0.46–2.52)	 0.862
CFH	 rs1065489	 68	 362	 10	 48	 157	 30	 130	 4	 22	 54	 A	 1.26 (0.72–2.19)	 0.417
CFH	 rs1410996	 231	 201	 60	 111	 45	 85	 75	 24	 37	 19	 AA	 1.10 (0.63–1.93)	 0.735
CFH	 rs3753396	 64	 368	 5	 54	 157	 25	 135	 1	 23	 56	 B	 1.89 (0.22–16.40)	 0.482
CFH	 rs6677604	 343	 87	 134	 75	 6	 129	 31	 52	 25	 3	 AA	 1.14 (0.67–1.94)	 0.641
CFH	 rs3753394	 92	 340	 10	 72	 134	 47	 113	 7	 33	 40	 AA	 1.96 (0.72–5.32)	 0.182
CFH	 rs1061170	 278	 154	 95	 88	 33	 108	 56	 39	 30	 13	 BB	 1.04 (0.52–2.08)	 0.922

For favorable and unfavorable outcome, the number of patients in each allele or genotype is listed. AControl population did not comply with HWE.
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in the CNS using the GFAP promoter (C3a/GFAP mice) were 
compared with infected WT mice. C3a/GFAP mice had increased 
CSF wbc counts as compared with those of WT and C3ar1–/– mice 
(Supplemental Figure 3), but other parameters were similar (clini-
cal scores, ICP, neuroscores, proinflammatory mediators, and 
cytokines; Supplemental Figure 3).

Adjuvant treatment with C5 antibody. The experiments performed 
with C5ar1–/– mice suggested a major role for C5a in the regu-
lation of the immune response in pneumococcal meningitis; we 
therefore evaluated treatment with a neutralizing monoclonal 
antibody directed against murine C5 (C5-Ab, BB5.1) in the model. 
Animals were given i.p. C5-Ab or i.p. IgG (1 mg per mouse, each) 
prior to infection. Levels of cerebral sC5b-9 were significantly 
reduced in animals treated with C5-Ab (Figure 4). Consistent with 
that in C5ar1–/– mice, WT mice treated with C5-Ab prior to infec-
tion displayed a reduced CSF wbc count accompanied by better 
clinical scores when compared with those of animals treated with 
mouse IgG (Figure 4).

To define the site of action of C5 neutralization, we applied a low 
dose of C5-Ab (30 μg per mouse) to infected mice either by the i.p. 
(systemic) or intrathecal (i.t.) (local) route. Mice treated i.t. with 
C5-Ab had lower CSF leukocyte counts, less meningitis-associated 
intracranial complication, and better clinical status, as compared 
with mice treated with control IgG (Supplemental Table 5). No 
difference between infected mice treated with i.p. C5-Ab or control 
IgG was observed.

We next compared adjunctive C5-Ab treatment with adjunctive 
treatment with dexamethasone, the standard adjunct in humans 
with pneumococcal meningitis, (1, 8), or adjunctive treatment 
with neutralizing TLR2 and TLR4 antibodies. Treatment with 
TLR2 and TLR4 antibodies was based on our recent observation 
that TLR2 and TLR4 are essential in mounting the CNS innate 
immune response in pneumococcal meningitis (29). All adjunctive 
therapies were administered i.p. 24 hours after infection concomi-
tant with antibiotic treatment consisting of ceftriaxone. In these 
experiments, i.p. treatment with PBS or IgG served as control. 

Figure 1
Association of C5a and TCC concen-
trations in CSF with disease severity 
and outcome. (A–D) Pearson cor-
relation analysis of C5a (A and C) 
and TCC (B and D) CSF levels with 
Glasgow Coma Scale score and 
CSF protein concentration. Each 
dot represents an individual patient; 
diagonal lines represent the mean. 
Co-eff, coefficient. (E and F) Median 
(E) C5a and (F) TCC CSF levels 
in patients with CSF wbc counts of 
more than 1,000 (white bars) versus 
those with less than 1,000 (black 
bars), unfavorable (white bars) ver-
sus favorable outcome (black bars), 
and deceased (white bars) versus 
surviving patients (black bars).  
P values for differences between 
groups were determined with the 
Mann-Whitney U test.
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Treatment with the C5-Ab prevented lethal outcome in all treated 
animals, as shown by a significant decrease in the mortality rate as 
compared with treatment with IgG (deaths, 7 out of 21 mice [33%]; 
Figure 5A). Adjunctive treatment with dexamethasone reduced the 
mortality rate as compared with that with PBS (deaths, 2 out of 10 
mice [20%] vs. 5 out of 16 mice [31%]) but was less effective when 
compared with treatment with C5-Ab (Figure 5C). Adjunctive treat-
ment with anti-TLR2 and TLR4 antibodies caused a significant 
attenuation of meningeal inflammation and brain tissue dam-
age, in line with our previous study (29) (Supplemental Table 5);  
however, these antibodies had no effect on mortality (deaths, 2 out 
of 8 mice [25%]; Figure 5B). Adjunctive treatment with C5-Ab, but 
not with dexamethasone or anti-TLR2 and 4 antibodies, resulted 
in a reduction of meningitis-induced brain damage (neuroscores, 
2.3 ± 1.6 vs. 4.2 ± 1.6 in IgG-treated mice [P = 0.012], vs. 4.3 ± 1.5 in 
anti-TLR2– and TLR4–treated mice, 3.5 ± 2.0 in dexamethasone-
treated mice, and 3.7 ± 1.7 in PBS-treated mice).

Discussion
We demonstrated that a common variant in C5 was associated 
with unfavorable outcome in adults with community-acquired 
pneumococcal meningitis. The anaphylatoxin C5a was identified 
as the crucial complement product in pneumococcal meningitis. 
Neutralization experiments showed that adjunctive treatment 
with C5-Ab improved outcome in mice with pneumococcal menin-

gitis. The observed effect of C5-Ab was superior to that 
of adjuvant dexamethasone, the antiinflammatory drug 
that is currently recommended in clinical guidelines 
(2, 30). Since anti-C5 antibodies are currently licensed 
for clinical use (eculizumab) or used in clinical trials 
(pexelizumab) (31, 32), our results present a promising 
treatment option for future patients with community-
acquired bacterial meningitis.

Patients with the rs17611 GG genotype were at higher 
risk for unfavorable outcome as compared with carriers 
of the A allele (OR, 2.26; 95% CI, 1.30–3.94). Our genetic 
association study was nationwide, and, therefore, we 
were able to study a representative sample of adults with 
acute bacterial meningitis. The prospective approach 
allowed us to collect comprehensive clinical data, result-
ing in a well-defined group of patients with microbio-
logically confirmed community-acquired bacterial men-
ingitis. Our large sample gave us the statistical power 
to perform a Bonferroni correction for multiple testing, 
and, subsequently, we were able to validate our findings 
in a mouse model of pneumococcal meningitis.

Patients with the rs17611 risk genotype GG had 
lower CSF wbc counts on admission. Clinical studies 
have shown that lower CSF wbc counts on admission 
in patients with bacterial meningitis are associated with 
sepsis and systemic compromise and adverse outcomes 
later in disease course (3, 33). Sepsis was not more com-
mon in patients with the GG genotype in this study, 
although power may be insufficient to detect such a 
difference. Animals studies in a pneumococcal menin-
gitis model showed that lower CSF wbc counts early in 
disease course were associated with high bacterial load, 
which correlates with intracranial complications and 
poor outcome (34). These experiments also showed that 
later in disease course, higher CSF wbc counts correlated  

with high bacterial loads and were associated with poor out-
come (34). Other experimental work in pneumococcal meningitis 
showed a critical role for the cumulative exposure to bacteria dur-
ing the infection period (35). We speculate that the lower CSF wbc 
counts in patients with the risk genotype may be due to a reduced 
chemoattractant function of C5a.

Functional studies have previously shown that SNPs in com-
plement factors can influence complement activation and bind-
ing affinity independent of concentration (36, 37). A study on 
rs17611 function showed the GG genotype was associated with 
reduced serum C5 concentration among 100 healthy volunteers 
(38). A follow-up study, however, showed that these subjects had 
serum C5 activity similar to that of those with rs17611 AA/AG, 
despite lower C5 serum concentration (39). This observation is 
consistent with our results, which showed similar C5a and TCC 
concentration in both genotypes.

The anaphylatoxin C5a is a powerful chemoattractant, guid-
ing neutrophils but also directly stimulating the production of 
cytokines, chemokines, and adhesion molecules (12, 40). Major 
neurologic complications in patients with pneumococcal men-
ingitis include cerebrovascular complications and brain edema, 
which are caused, at least partly, by massive neutrophilic inflam-
matory reaction. In patients with bacterial meningitis, CSF C5a 
concentrations were markedly elevated, and C5a levels were associ-
ated with high CSF wbc counts and unfavorable outcome. In our 

Figure 2
Expression profile of the anaphylatoxin C5a and the TCC in mice with pneumo-
coccal meningitis. (A) Levels of C5a (ng/mg) and (B) TCC (ng/mg) were deter-
mined by ELISA in brain homogenates of WT mice intracisternally injected with 
PBS (controls, n = 4) or infected with S. pneumoniae at different time points 
after infection (6, 24, and 48 hours; n = 5 each) (above). Levels of C5a and TCC 
were both found to be increased at 24 hours (*P = 0.006 and †P = 0.002) and 48 
hours (**P = 0.014 and ††P = 0.016) after infection (unpaired Student’s test and 
Bonferroni correction for multiple measurements; data are shown as mean ± SD). 
(C and D) Formalin-fixed and paraffin-embedded brains of WT mice infected for 
24 hours were used for immunohistochemistry. C5a and TCC immunoreactivity 
was visualized with streptavidin horseradish peroxidase and DAB, which yields a 
brown reaction product. In infected mice, positive immunostaining was seen in the 
inflammatory infiltrates for both C5a (original magnification, ×400 [C]) and TCC 
(original magnification, ×1,000 [D]).
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mouse model, deficiency of the receptor for C5a led to an improved 
clinical status and clinical course. C5a receptor deficiency and C5 
neutralization resulted in a marked reduction of CSF wbc counts 
in the pneumococcal mouse model, with lower concentrations of  
IL-6, CXCL1, and CXCL2 in C5ar1–/– mice. Pretreatment with 
CXCL1 and CXCL2 antibodies caused a reduction of CSF wbc 
count, but to a lesser extent than that found in C5ar1–/– mice, 
indicating that C5a regulates chemokine expression but also has 
a direct chemotactic effect. In our experiments, i.t. anti-C5 treat-
ment also led to a significant reduction in CSF pleocytosis. Previ-
ous work showed that treatment with antibodies to native human 
C5 inhibited leukocyte influx in rabbits with pneumococcal men-
ingitis (40), and intracisternal administration of C5a caused rapid 
influx of wbc into the CSF of rabbits (41). C5a-mediated neutro-
philic inflammation may cause direct 
tissue injury by release of cytotoxic prod-
ucts from neutrophils and/or by precip-
itating cerebral vasculitis and a subse-
quent reduction in blood supply to the 
brain (27). This concept is supported by 
evidence presented here and in previous 
studies demonstrating that neutrophil 
depletion approaches are beneficial in 
pneumococcal meningitis, particularly 
when used as adjunctive treatment with 
antibiotic therapy (27, 42). These data 
seem to contradict our observation in 
humans that the rs17611 risk genotype 
GG had lower CSF wbc count; however, 
CSF wbc counts were determined in sam-
ples withdrawn on admission, early in 
the course of the disease. Bacterial titers 
were not determined in our patients; 
nevertheless, it is noteworthy that the 
inoculum size does not correlate with 

subsequent bacterial titers but does determine the disease kinet-
ics. As a consequence, the precise classification of disease stage is 
not possible in patients with pneumococcal meningitis.

The role of C5a is not limited to its chemoattractant and pro-
inflammatory function. First, C5a can induce the expression of 
tissue factor and plasminogen activator inhibitor-1, leading to 
amplification of coagulation and inhibition of fibrinolysis (43, 
44). The relation between C5a and coagulation pathways is recip-
rocal: thrombin directly cleaves C5 and generates active C5a, and 
thrombin-activatable carboxypeptidase B inhibits C5a (43, 45). 
The procoagulant activity of C5a may represent an additional 
and/or additive factor in the vascular occlusion process in bacte-
rial meningitis (24, 46, 47). Second, C5a increases vascular perme-
ability, thereby contributing to meningitis-induced brain edema. 

Figure 3
Role of C5a in the mouse model of pneumococcal meningitis. To eval-
uate the role of C5a, C5ar1–/– mice (n = 9) were examined. Animals 
were infected with S. pneumoniae and evaluated at 24 hours after 
infection for CSF leukocyte count (CSF wbc count), clinical score, ICP, 
BBB breaching and intracerebral hemorrhage combined in the neu-
roscore, and expression of proinflammatory mediators and cytokines, 
namely CXCL1/KC and CXCL2/MIP-2. Infected C5ar1–/– mice were 
compared with infected WT mice (BALB/c, male; n = 10). BALB/c mice 
intracisternally injected with PBS served as controls (BALB/c controls; 
n = 6). Compared with infected WT mice, C5ar1–/– mice displayed 
reduced CSF leukocytosis (*P = 0.001) accompanied by a better clini-
cal status (†P = 0.001) and reduced secondary CNS complications 
(reduced ICP [‡P = 0.001] and neuroscore [**P = 0.025]). Levels of 
IL-6, CXCL1, and CXCL2 were reduced in C5ar1–/– mice (P = 0.038, 
††P = 0.019, and ‡‡P = 0.047, respectively; unpaired Student’s test; 
data are shown as mean ± SD).

Figure 4
Pretreatment model of C5-Ab. To confirm the activity of C5-Ab, we first treated animals with i.p. 
C5-Ab (n = 7) or i.p. IgG (n = 12) prior to infection. After 24 hours, expression of the TCC C5b-9 
was determined in mouse brain homogenates (left). Additionally, animals were evaluated for CSF 
leukocyte count (CSF wbc count; middle) and clinical score (right). Animals pretreated with the 
antibody to C5 prior to infection displayed reduced levels of C5b-9 (*P = 0.012) and reduced CSF 
leukocytosis (†P = 0.001) accompanied by a better clinical status (‡P = 0.002). Unpaired Student’s 
test; data are shown as mean ± SD.
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In our experiments, C5a receptor deficiency and C5 neutraliza-
tion resulted in a reduction of brain albumin concentrations, 
indicative of a protective effect against meningitis-induced BBB 
breakdown. In line with this finding is the recent observation that 
C5a receptor inhibition maintained the integrity of the BBB in 
experimental lupus (48). Moreover, silencing of the C5ar1 gene 
with siRNA was found to prevent the bacterial lipopolysaccharide-
induced increased vascular permeability in multiple organs (49). 
Finally, very high concentrations of C5a were shown to induce 
rapid apoptosis in neuronal cells via neuronal C5a receptor–asso-
ciated signal transduction pathways (50), whereas in lower con-
centrations, C5a inhibited apoptosis, induced neuroproliferation, 
and decreased glutamate excitotoxicity (51). These findings imply 
that C5a may function as a direct modulator of brain tissue injury 
in pneumococcal meningitis.

Adjunctive treatment with C5-Ab resulted in a reduction in men-
ingitis-induced brain damage and prevented death, despite hav-
ing no effect on either bacterial outgrowth in the CSF and blood 
or antibiotic-induced bacterial killing in experimental pneumo-
coccal meningitis. Complement-mediated opsonophagocytosis 
and not MAC-mediated bacterial lysis is the major host defense 
mechanism against invasive pneumococcal infections. In contrast, 
MAC is known to play a major role in meningococcal killing. Anti-
C5 antibodies that block C5a and MAC formation were found to 
interfere with bacterial lysis using a human whole blood model of 
meningococcal sepsis (52). However, this study also showed that 
C5a-specific antibodies (monoclonal antibody 137-126) can bind 

the C5a moiety and inhibit the harmful effects of C5a while pre-
serving MAC-mediated bacterial killing (52).

The observed adjuvant effect of C5-Ab was superior to that of 
neutralizing antibodies against TLR2 and TLR4, 2 pattern recog-
nition receptors (PRRs) that have been shown to be essential for 
mounting the innate immune response to pneumococcal infection 
of the CNS in experiments using Tlr2–/–, Tlr4–/–, and Tlr2/4–/– mice 
(27, 29). Indeed, in our neutralization experiments, antibodies to 
both TLR2 and TLR4, when administered prior to infection, pro-
duced a similar phenotype to that seen in the receptor-deficient 
animals with reduced CSF pleocytosis and improved brain pathol-
ogy. Our data show that TLR signaling is vital for the initial innate 
immune response but dispensable for the maintenance of inflam-
mation in meningitis during the later disease course. The presence 
of S. pneumoniae in the subarachnoid space is initially recognized 
by TLR2 and TLR4 as well as other PRRs. Activation of TLR2 and 
TLR4 by pneumococci leads to MyD88-dependent induction and 
activation of the complement system in the brain (29). Among the 
complement components produced, C5 and its activation product 
C5a have now been singled out to be crucial for the propagation 
of the inflammatory reaction. The C5a-driven inflammatory reac-
tion, in turn, contributes substantially to meningitis-induced vas-
cular and tissue injury, thus representing a major determinant for 
the outcome of the disease.

Our study has some limitations. A selection bias was introduced 
since DNA was not available for a considerable proportion of 
patients (32%), particularly those with more severe disease. Inclu-

Figure 5
Effect of additional treatment with a monoclonal antibody to murine C5 or with dexamethasone on survival in mice with pneumococcal meningitis. 
Additional treatment with a monoclonal antibody to (A) murine C5 (anti–C5-Ab; n = 10), (B) antibody to TLR2 and TLR4 (anti-TLR2/4; n = 8), 
or (C) dexamethasone (n = 10) was administered 24 hours after infection together with antibiotic treatment with ceftriaxone. Administration of 
an IgG1 isotype control (IgG1; n = 21) or PBS (n = 16) served as control. Kaplan Meier curves of survival are shown. Additional treatment with  
C5-Ab prevented lethal outcome in all animals (P = 0.047). Adjuvant therapy with dexamethasone or with anti-TLR2 and TLR4 antibodies had no 
significant effect on meningitis-associated death (death rate, 20% or 25% compared with 31% in PBS-treated animals). (D) Representative brain 
sections obtained from mice from the different experimental groups 48 hours after infection. Only treatment with C5-Ab led to a visible reduction 
in cerebral hemorrhages observed in infected mice treated with either control IgG or the vehicle PBS.



research article

	 The Journal of Clinical Investigation      http://www.jci.org      Volume 121      Number 10      October 2011	 3951

sion of patients with less severe disease will decrease study power, 
resulting in type II errors. However, this will not negate the associa-
tion of rs17611 with outcome. The nationwide design allowed us to 
detect this selection bias (11, 53). Furthermore, there may be func-
tional differences between the complement systems of humans and 
mice. Animal models in rheumatoid arthritis showed a beneficial 
effect of C5a receptor blockage, but a clinical trial showed no bene-
fit (54, 55). However, bacterial opsonization by mouse complement 
is known to be similar to the human situation (56). Therefore, we 
believe that our model is valid and provides valuable information 
on complement function in pneumococcal meningitis. Overall, we 
have used a clinical-based approach to generate a hypothesis that 
was subsequently confirmed in animal studies.

Methods

Dutch bacterial meningitis cohort
The nationwide prospective cohort study included patients with bacterial 
meningitis that were older than 16 years of age with positive CSF cultures, 
who were identified by NRLBM from March 2006 to June 2009. NRLBM 
provided the names of the hospitals in which patients with bacterial men-
ingitis had been admitted 2–6 days previously, and the treating physician 
was contacted for permission to include the patient. Controls for exposure/
susceptibility were patients’ partners or their nonrelated proxies living in 
the same dwelling. Data on age, sex, and ethnicity of controls were collect-
ed. Secured online case-record forms were used to collect data on patient 
history, symptoms and signs on admission, treatment, complications, and 
outcome. Outcome was graded at discharge according to the GOS, a well-
validated instrument with good inter-observer agreement (23). A score of 
1 on this scale indicates death; a score of 2 indicates a vegetative state; a 
score of 3 indicates severe disability; a score of 4 indicates moderate dis-
ability; and a score of 5 indicates mild or no disability. A favorable outcome 
was defined as a score of 5, and an unfavorable outcome was defined as a 
score of 1 to 4. Blood from patients and controls for DNA extraction was 
collected in sodium/EDTA. DNA was isolated with the Gentra Puregene 
Isolation Kit (Qiagen), and quality control procedures were performed to 
determine the yield and purity.

Genotyping
A total of 17 common SNPs in the complement system were genotyped 
using TaqMan SNP Genotyping Assays (Applied Biosystems) with 96 × 96 
Dynamic Arrays (Fluidigm) by Service XS, Leiden, the Netherlands, and the 
Genetics Core Facility in the Academic Medical Center. Laboratory person-
nel were blinded to clinical information.

CSF complement analysis
CSF of patients was obtained from the diagnostic lumbar puncture. Sub-
sequently, CSF and wbc were stored separately at –80°C. CSF complement 
component C5a and TCC levels were determined using the Microvue C5a 
and sC5b-9 (TCC) Quidel ELISA Kits according to the manufacturer’s 
instructions. Strength of relationships between C5a and TCC levels and 
clinical or biological features was assessed by Spearman’s correlation tests.

Animal pneumococcal meningitis model
A well-characterized mouse model of pneumococcal meningitis was used 
in this study (25). Prior to infection, mice were weighed and scored clini-
cally, and temperature was taken. For clinical scoring, different tasks were 
evaluated, namely a postural reflex test and a beam walk test. Additionally, 
clinical scoring comprised presence of seizures, piloerection, or reduced 
vigilance (57). The maximum clinical score was 12 and indicated severe 

disease, whereas a score of 0 defined healthy, uninfected mice. To further 
evaluate locomotor and exploratory behavior the OFT was used. In this 
test, mice were put in the center of a square box, subdivided into 9 fields. 
Mice were observed for 2 minutes, and the number of entered fields was 
counted. After clinical evaluation, bacterial meningitis was induced by 
intracisternal injection of 15 μl 107 CFUs per ml S. pneumoniae type 2 (D39 
strain; provided by Sven Hammerschmidt, University of Greifswald, Greif-
swald, Germany) under short-term anesthesia with isoflurane. To evaluate 
the acute disease, animals were investigated 24 hours after infection. To 
evaluate adjuvant treatment options, mice received antibiotic therapy (100 
mg/kg ceftriaxone i.p.) together with adjuvant treatment at 24 hours after 
infection and were investigated 48 hours after infection. In both settings, at 
the end of each experiment, animals were weighed and scored clinically as 
described above, and the temperature was taken. Mice were then anesthe-
tized with ketamine/xylazine, and a catheter was placed into the cisterna 
magna. CSF samples were obtained for wbc count and determination of 
bacterial titers. ICP was measured. Finally, animals were perfused trans-
cardially with ice-cold PBS, and brains were removed and either frozen 
immediately or fixed in formalin. Formalin-fixed brains were subsequently 
embedded in paraffin for immunohistochemistry.

Experimental groups in the mouse model
Acute model of pneumococcal meningitis. The following experimental groups 
were investigated: (a) WT mice injected intracisternally with 15 μl PBS 
(controls; C57BL/6, male, n = 8 and BALB/c, male, n = 6); (b) WT mice 
injected intracisternally with S. pneumoniae (C57BL/6, male, n = 12; 
C57BL/6, female, n = 20; and BALB/c, male, n = 10); (c) C3ar1–/– mice 
(male, genetic background C57BL/6; provided by Richard A. Wetsel, Uni-
versity of Texas Health Science Center, Houston, Texas, USA) injected 
intracisternally with S. pneumoniae (n = 12); (d) C3a/GFAP mice (male, 
genetic background C57BL/6) injected intracisternally with S. pneumoniae  
(n = 11); (e) C6–/– mice (female, genetic background C57BL/6) injected 
intracisternally with S. pneumoniae (n = 14); (f) Cd59a–/– mice (female, 
genetic background C57BL/6) injected intracisternally with S. pneumoniae  
(n = 11); (g) C5ar1–/– mice (male, genetic background BALB/c, obtained 
from The Jackson Laboratory) injected intracisternally with S. pneumoniae 
(n = 9); (h) WT mice injected intracisternally with S. pneumoniae and treated 
i.p. with either a neutralizing monoclonal antibody directed against murine 
C5 (1 mg per mouse; clone BB5.1, n = 7) (58, 59) or mouse IgG antibodies  
(1 mg per mouse, n = 12; Innovative Research); (i) WT mice injected intracis-
ternally with S. pneumoniae and treated i.p. with a neutralizing monoclonal 
antibody directed against murine C5 (30 μg per mouse; clone BB5.1, n = 3),  
i.t. with a neutralizing monoclonal antibody directed against murine C5 
(30 μg per mouse; clone BB5.1, n = 4), or i.t. mouse IgG antibodies (30 μg 
per mouse, n = 4); (j) WT mice injected intracisternally with S. pneumoniae 
and treated i.p. with 250 μg anti–GR-1 (granulocyte depletion antibody;  
n = 8) or mouse IgG antibodies (250 μg per mouse, n = 8); (k) WT mice 
injected intracisternally with S. pneumoniae and treated i.p. with a neutral-
izing monoclonal antibody directed against CXCL2/MIP-2 (100 μg per 
mouse, n = 3), the neutralizing antibody against CXCL2/MIP-2 combined 
with a neutralizing antibody directed against CXCL1/KC (100 μg per 
mouse, n = 4), rat isotype control antibodies (IgG2B; 100 μg per mouse, 
n = 3), or rat isotype control antibodies (100 μg IgG2B and 100 μg IgG2A 
per mouse, n = 4); (l) WT mice injected intracisternally with S. pneumoniae 
and treated i.p. with a neutralizing monoclonal antibody directed against 
murine TLR2 and TLR4, clone T2.5 (mTLR2), and clone 1A6 (hTLR4)  
(n = 8) (provided by Novimmune) (0.75 mg each per mouse, n = 5) or mouse 
IgG antibodies (1.5 mg per mouse, n = 5).

Treatment model of pneumococcal meningitis. WT mice were injected intra-
cisternally with S. pneumoniae (C57BL/6, male) and additionally treated  
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i.p. with (a) PBS (250 μl at 24 and 32 hours after infection; n = 16);  
(b) dexamethasone (0.5 mg/kg at 24 and 32 hours after infection; n = 10); 
(c) a neutralizing monoclonal antibody directed against murine C5 (1 mg 
per mouse; clone BB5.1, n = 10); (d) neutralizing antibodies direct against 
TLR2 and TLR4 (0.75 mg each per mouse; n = 8); and (e) mouse IgG anti-
bodies (1 mg per mouse; n = 21).

Determination of cerebellar bacterial titers
For determination of bacterial titers, the cerebellum was dissected and 
homogenized in 1 ml sterile PBS. Cerebellar homogenates were diluted 
serially, plated on blood agar plates, and cultured for 24 hours before 
CFUs were counted.

Neuroscore
For better comparison, the degree of breaching of the BBB integrity and 
the number of intracerebral hemorrhages were combined in a neuroscore. 
For the determination of the BBB integrity, frozen mouse brain extracts 
were examined for diffusion of albumin using ELISA as described previ-
ously (25). The score was 0, 1, or 2, if brain albumin was 0–35, 36–75, or 
76–140 ng/μg, respectively. For more than 140 ng/μg of albumin, the score 
assigned was 3. For determination of intracerebral hemorrhage, mouse 
brains were cut in a frontal plane into 10-mm thick sections. Beginning 
from the anterior parts of the lateral ventricles, 9 serial sections were pho-
tographed with a digital camera at 0.3-mm intervals throughout the ven-
tricle system. Hemorrhagic spots were counted, and the bleeding area was 
measured. A score of 0 indicates no cerebral bleedings, a score of 1 indicates 
up to 20 cerebral bleeding spots, a score of 2 indicates between 21 and 
60 cerebral bleeding spots, and a score of 3 indicates more than 60 cere-
bral bleeding spots. The maximum neuroscore was 6 and indicated severe 
neuronal damage, whereas a score of 0 indicated no neuronal damage.

Analysis of protein expression
Expression of C5a, TCC, IL-6, CXCL1/KC, and CXCL2/MIP-2 was deter-
mined in mouse brain homogenates by ELISA according to the manu-
facturer’s instructions (C5a and TCC, USCN Life Science, Biozol; IL-6, 
CXCL2/MIP-2, and CXCL1/KC, R&D Systems). Expression profiles of 
C5a and TCC were additionally evaluated by immunohistochemistry per-
formed on paraffin-embedded slides of mouse brain tissue as previously 
described (60). Briefly, after deparaffinization and steam bath antigen 
retrieval in citrate buffer, endogenous peroxidase was quenched with 7.5% 
hydrogen peroxide. Nonspecific binding was minimized by incubation in 
10% normal goat serum. Slides were then incubated overnight at 4°C with 
a rat anti-mouse C5a or TCC antibody or the appropriate isotype control 
immunoglobulin. Specific labeling was detected with a biotin-conjugated 
rabbit anti-rat antibody and application of horseradish peroxidase–bound 
avidin/biotin from Vectastain ABC Kits, followed by development with 
3,3′-diaminobenzidine (DAB) solution (both from Vector Laboratories). 
Counterstaining was performed using Mayer’s hematoxylin. Slides were 
digitized using a Zeiss Axiovert microscope (Carl Zeiss) connected to a 
cooled Moticam 5000 video camera (Moticam).

Statistical analysis – genetic analysis
For evaluating the role of SNPs on outcome, assuming an overall event rate 
of 25% (n = 100 cases) to patients with favorable outcome (n = 300), a sample 
size of 400 provides sufficient power (80%) when a risk genotype has a rela-
tive risk of 3.0 or more, using a P value of 0.0029 (Bonferroni corrected).

The Mann-Whitney U test was used to identify differences in baseline 
characteristics among groups with respect to continuous variables, and 
dichotomous variables were compared with use of the χ2 test. These sta-
tistical tests were 2-tailed, and a P value of less than 0.05 was regarded as 
significant. Differences in genotype frequencies were analyzed with the χ2 
or Fishers’ exact tests by use of the programs R-statistics and PASW18. For 
the SNP analysis, we used a Bonferroni correction for multiple testing (17 
SNPs; P < 0.0029). We calculated whether the genotype frequencies in the 
control groups concurred with the HWE by use of a χ2 and exact test with 
1 degree of freedom with a P value of less than 0.05 to indicate significance. 
SNPs deviating from the HWE were excluded.

The genotype frequencies of patients with a favorable outcome was com-
pared with those with an unfavorable outcome as defined by the GOS. 
Subgroup analyses were defined by ethnicity (mixed European descent), 
causative organism (S. pneumoniae), and a combination of these factors. We 
used a multivariate logistic regression analysis to calculate ORs and 95% 
CIs to assess the strength of the association among potential risk factors 
(including identified polymorphisms) and outcome.

Statistics – animal experiments
The principal statistical test was a 2-tailed unpaired Student’s t test (com-
bined with an α-adjustment in case of multiple comparisons) or a log-
rank test (Mantel) for survival. Differences were considered significant at  
P < 0.05. Data are displayed as mean ± SD.

Study approval
The protocol used in this study was approved by the Academic Medical 
Center and all local participating hospitals (see Supplemental Methods). 
Written informed consent was obtained from all participating patients, or 
their legally authorized representatives, and controls. All animal experi-
ments were approved by the animal ethic committee of the government of 
Upper Bavaria, Germany.

Acknowledgments
This study has been funded by grants from the Netherlands Organi-
zation for Health Research and Development (ZonMw; NWO-Veni 
grant 2006 [916.76.023] and NWO-Vidi grant 2010 [917.113.58] to 
D. van de Beek), the Academic Medical Center (AMC Fellowship 2008 
to D. van de Beek), the European Research Council (ERC Starting 
Grant 281156 to D. van de Beek), the German Research Foundation 
(Pfi246/7-1 to H.W. Pfister and U. Koedel and SFB-576, TP-A5 to  
U. Koedel), and the Else Kröner Fresenius Stiftung (P72/08 // A84/08 
to U. Koedel). We thank B. Angele for her technical assistance and 
Sven Hammerschmidt, University of Greifswald, Germany, for pro-
viding pneumococcal strains. We thank M.T. van Meegen and E. Jan-
sen for their work on genotyping. We thank the Dutch physicians 
that participated in the study (see Supplemental Methods).

Received for publication February 9, 2011, and accepted in revised 
form August 3, 2011.

Address correspondence to: Diederik van de Beek, Department of 
Neurology, Center of Infection and Immunity Amsterdam (CINI-
MA), Academic Medical Center, University of Amsterdam, PO Box 
22660, 1100DD Amsterdam, The Netherlands. Phone: 31205663842; 
Fax: 31205669374; E-mail: D.vandeBeek@amc.uva.nl.

	 1.	Brouwer MC, Tunkel AR, van de Beek D. Epide-
miology, diagnosis, and antimicrobial treatment 
of acute bacterial meningitis. Clin Microbiol Rev. 
2010;23(3):467–492.

	 2.	van de Beek D, de Gans J, Tunkel AR, Wijdicks 
EF. Community-acquired bacterial meningitis in 
adults. N Engl J Med. 2006;354(1):44–53.

	 3.	van de Beek D, de Gans J, Spanjaard L, Weisfelt M, 

Reitsma JB, Vermeulen M. Clinical features and 
prognostic factors in adults with bacterial menin-
gitis. N Engl J Med. 2004;351(18):1849–1859.

	 4.	Tauber MG, Khayam-Bashi H, Sande MA. Effects of 



research article

	 The Journal of Clinical Investigation      http://www.jci.org      Volume 121      Number 10      October 2011	 3953

ampicillin and corticosteroids on brain water con-
tent, cerebrospinal fluid pressure, and cerebrospi-
nal fluid lactate levels in experimental pneumococ-
cal meningitis. J Infect Dis. 1985;151(3):528–534.

	 5.	de Gans J, van de Beek D. Dexamethasone in adults 
with bacterial meningitis. N Engl J Med. 2002; 
347(20):1549–1556.

	 6.	van de Beek D, de Gans J. Dexamethasone in adults 
with community-acquired bacterial meningitis. 
Drugs. 2006;66(4):415–427.

	 7.	van de Beek D, et al. Adjunctive dexamethasone in 
bacterial meningitis: a meta-analysis of individual 
patient data. Lancet Neurol. 2010;9(3):254–263.

	 8.	Brouwer MC, McIntyre P, de Gans J, Prasad K, van de 
Beek D. Corticosteroids for acute bacterial meningi-
tis. Cochrane Database Syst Rev. 2010;(9):CD004405.

	 9.	Brouwer MC, Heckenberg SG, de Gans J, Spanjaard 
L, Reitsma JB, van de Beek D. Nationwide imple-
mentation of adjunctive dexamethasone therapy 
for pneumococcal meningitis. Neurology. 2010; 
75(17):1533–1539.

	 10.	Hamburg MA, Collins FS. The path to personal-
ized medicine. N Engl J Med. 2010;363(4):301–304.

	 11.	Brouwer MC, de Gans J, Heckenberg SG, Zwinder-
man AH, van der Poll T, van de Beek D. Host genet-
ic susceptibility to pneumococcal and meningococ-
cal disease: a systematic review and meta-analysis. 
Lancet Infect Dis. 2009;9(1):31–44.

	 12.	Ricklin D, Hajishengallis G, Yang K, Lambris JD. 
Complement: a key system for immune surveillance 
and homeostasis. Nat Immunol. 2010;11(9):785–797.

	 13.	Jönsson G, Truedsson L, Sturfelt G, Oxelius VA, 
Braconier JH, Sjöholm AG. Hereditary C2 defi-
ciency in Sweden: frequent occurrence of invasive 
infection, atherosclerosis, and rheumatic disease. 
Medicine (Baltimore). 2005;84(1):23–34.

	 14.	Sprong T, et al. Deficient alternative complement 
pathway activation due to factor D deficiency by 2 
novel mutations in the complement factor D gene 
in a family with meningococcal infections. Blood. 
2006;107(12):4865–4870.

	 15.	Biesma DH, et al. A family with complement factor 
D deficiency. J Clin Invest. 2001;108(2):233–240.

	 16.	Fijen CA, et al. Properdin deficiency: molecu-
lar basis and disease association. Mol Immunol. 
1999;36(13–14):863–867.

	 17.	Haralambous E, et al. Factor H, a regulator of com-
plement activity, is a major determinant of menin-
gococcal disease susceptibility in UK Caucasian 
patients. Scand J Infect Dis. 2006;38(9):764–771.

	 18.	Davila S, et al. Genome-wide association study 
identifies variants in the CFH region associated 
with host susceptibility to meningococcal disease. 
Nat Genet. 2010;42(9):772–776.

	 19.	Tuomanen E, Hengstler B, Zak O, Tomasz A. The 
role of complement in inflammation during exper-
imental pneumococcal meningitis. Microb Pathog. 
1986;1(1):15–32.

	 20.	Paul R, et al. Myeloid Src kinases regulate phago-
cytosis and oxidative burst in pneumococcal men-
ingitis by activating NADPH oxidase. J Leukoc Biol. 
2008;84(4):1141–1150.

	 21.	Rupprecht TA, et al. Complement C1q and C3 are 
critical for the innate immune response to Strepto-
coccus pneumoniae in the central nervous system. 
J Immunol. 2007;178(3):1861–1869.

	 22.	Gardner P. Clinical practice. Prevention of 
meningococcal disease. N Engl J Med. 2006; 
355(14):1466–1473.

	 23.	Jennett B, Teasdale G, Braakman R, Minderhoud 
J, Knill-Jones R. Predicting outcome in individual 
patients after severe head injury. Lancet. 1976; 
1(7968):1031–1034.

	 24.	Weisfelt M, van de Beek D, Spanjaard L, Reitsma 
JB, de Gans J. Clinical features, complications, and 

outcome in adults with pneumococcal meningi-
tis: a prospective case series. Lancet Neurol. 2006; 
5(2):123–129.

	 25.	Koedel U, et al. Apoptosis is essential for neutro-
phil functional shutdown and determines tissue 
damage in experimental pneumococcal meningitis. 
PLoS Pathog. 2009;5(5):e1000461.

	 26.	Brown JS, et al. The classical pathway is the dominant 
complement pathway required for innate immunity 
to Streptococcus pneumoniae infection in mice. Proc 
Natl Acad Sci U S A. 2002;99(26):16969–16974.

	 27.	Koedel U, Klein M, Pfister HW. New understand-
ings on the pathophysiology of bacterial meningi-
tis. Curr Opin Infect Dis. 2010;23(3):217–223.

	 28.	Boos L, Campbell IL, Ames R, Wetsel RA, Barnum 
SR. Deletion of the complement anaphylatoxin 
C3a receptor attenuates, whereas ectopic expres-
sion of C3a in the brain exacerbates, experimental 
autoimmune encephalomyelitis. J Immunol. 2004; 
173(7):4708–4714.

	 29.	Klein M, et al. Innate immunity to pneumococcal 
infection of the central nervous system depends on 
toll-like receptor (TLR) 2 and TLR4. J Infect Dis. 2008; 
198(7):1028–1036.

	 30.	Tunkel AR, et al. Practice guidelines for the manage-
ment of bacterial meningitis. Clin Infect Dis. 2004; 
39(9):1267–1284.

	 31.	Armstrong PW, et al. Pexelizumab for acute ST-
elevation myocardial infarction in patients under-
going primary percutaneous coronary interven-
tion: a randomized controlled trial. JAMA. 2007; 
297(1):43–51.

	 32.	Hillmen P, et al. The complement inhibitor eculi-
zumab in paroxysmal nocturnal hemoglobinuria. 
N Engl J Med. 2006;355(12):1233–1243.

	 33.	Weisfelt M, van de Beek D, Spanjaard L, Reitsma 
JB, de Gans J. Attenuated cerebrospinal fluid leuko-
cyte count and sepsis in adults with pneumococcal 
meningitis: a prospective cohort study. BMC Infect 
Dis. 2006;6:149.

	 34.	Giampaolo C, Scheld M, Boyd J, Savory J, Sande 
M, Wills M. Leukocyte and bacterial interrelation-
ships in experimental meningitis. Ann Neurol. 1981; 
9(4):328–333.

	 35.	Tauber MG, Kennedy SL, Tureen JH, Lowenstein 
DH. Experimental pneumococcal meningitis causes 
central nervous system pathology without induc-
ing the 72-kd heat shock protein. Am J Pathol. 1992; 
141(1):53–60.

	 36.	Tortajada A, Montes T, Martinez-Barricarte R, 
Morgan BP, Harris CL, de Cordoba SR. The disease-
protective complement factor H allotypic variant 
Ile62 shows increased binding affinity for C3b and 
enhanced cofactor activity. Hum Mol Genet. 2009; 
18(18):3452–3461.

	 37.	Goicoechea de JE, et al. Gain-of-function muta-
tions in complement factor B are associated with 
atypical hemolytic uremic syndrome. Proc Natl Acad 
Sci U S A. 2007;104(1):240–245.

	 38.	Hillebrandt S, et al. Complement factor 5 is a quan-
titative trait gene that modifies liver fibrogenesis in 
mice and humans. Nat Genet. 2005;37(8):835–843.

	 39.	Gressner O, et al. Gc-globulin concentrations and 
C5 haplotype-tagging polymorphisms contribute 
to variations in serum activity of complement fac-
tor C5. Clin Biochem. 2007;40(11):771–775.

	 40.	Ernst JD, Hartiala KT, Goldstein IM, Sande MA. 
Complement (C5)-derived chemotactic activity 
accounts for accumulation of polymorphonuclear 
leukocytes in cerebrospinal fluid of rabbits with 
pneumococcal meningitis. Infect Immun. 1984; 
46(1):81–86.

	 41.	Kadurugamuwa JL, Hengstler B, Bray MA, Zak O. 
Inhibition of complement-factor-5a-induced inflam-
matory reactions by prostaglandin E2 in experimen-

tal meningitis. J Infect Dis. 1989;160(4):715–719.
	 42.	Tuomanen EI, Saukkonen K, Sande S, Cioffe C, 

Wright SD. Reduction of inflammation, tissue dam-
age, and mortality in bacterial meningitis in rabbits 
treated with monoclonal antibodies against adhe-
sion-promoting receptors of leukocytes. J Exp Med. 
1989;170(3):959–969.

	 43.	Ritis K, et al. A novel C5a receptor-tissue factor cross-
talk in neutrophils links innate immunity to coagu-
lation pathways. J Immunol. 2006;177(7):4794–4802.

	 44.	Markiewski MM, Nilsson B, Ekdahl KN, Mollnes TE, 
Lambris JD. Complement and coagulation: strang-
ers or partners in crime? Trends Immunol. 2007; 
28(4):184–192.

	 45.	Leung LL, Myles T, Nishimura T, Song JJ, Robinson 
WH. Regulation of tissue inflammation by throm-
bin-activatable carboxypeptidase B (or TAFI). Mol 
Immunol. 2008;45(16):4080–4083.

	 46.	Vergouwen MD, Schut ES, Troost D, van de Beek 
D. Diffuse cerebral intravascular coagulation and 
cerebral infarction in pneumococcal meningitis. 
Neurocrit Care. 2010;13(2):217–227.

	 47.	Kastenbauer S, Pfister HW. Pneumococcal meningi-
tis in adults: spectrum of complications and prog-
nostic factors in a series of 87 cases. Brain. 2003; 
126(pt 5):1015–1025.

	 48.	Jacob A, Hack B, Chiang E, Garcia JG, Quigg RJ, Alex-
ander JJ. C5a alters blood-brain barrier integrity in 
experimental lupus. FASEB J. 2010;24(6):1682–1688.

	 49.	Liu ZM, et al. Silencing of C5a receptor gene with 
siRNA for protection from Gram-negative bacterial 
lipopolysaccharide-induced vascular permeability. 
Mol Immunol. 2010;47(6):1325–1333.

	 50.	Farkas I, Baranyi L, Liposits ZS, Yamamoto T, Okada 
H. Complement C5a anaphylatoxin fragment causes 
apoptosis in TGW neuroblastoma cells. NeuroScience. 
1998;86(3):903–911.

	 51.	Yanamadala V, Friedlander RM. Complement in 
neuroprotection and neurodegeneration. Trends 
Mol Med. 2010;16(2):69–76.

	 52.	Sprong T, et al. Inhibition of C5a-induced inflam-
mation with preserved C5b-9-mediated bactericidal 
activity in a human whole blood model of menin-
gococcal sepsis. Blood. 2003;102(10):3702–3710.

	 53.	Brouwer MC, Read RC, van de Beek D. Host genetics 
and outcome in meningococcal disease: a systemat-
ic review and meta-analysis. Lancet Infect Dis. 2010; 
10(4):262–274.

	 54.	Woodruff TM, et al. Antiarthritic activity of an oral-
ly active C5a receptor antagonist against antigen-
induced monarticular arthritis in the rat. Arthritis 
Rheum. 2002;46(9):2476–2485.

	 55.	Vergunst CE, et al. Blocking the receptor for C5a in 
patients with rheumatoid arthritis does not reduce 
synovial inflammation. Rheumatology (Oxford). 2007; 
46(12):1773–1778.

	 56.	Osmers I, Szalai AJ, Tenner AJ, Barnum SR. Com-
plement in BuB/BnJ mice revisited: serum C3 levels 
and complement opsonic activity are not elevated. 
Mol Immunol. 2006;43(10):1722–1725.

	 57.	Malipiero U, et al. TGFbeta receptor II gene deletion 
in leucocytes prevents cerebral vasculitis in bacterial 
meningitis. Brain. 2006;129(pt 9):2404–2415.

	 58.	Huugen D, et al. Inhibition of complement factor 
C5 protects against anti-myeloperoxidase anti-
body-mediated glomerulonephritis in mice. Kidney 
Int. 2007;71(7):646–654.

	 59.	de Vries B, Matthijsen RA, Wolfs TG, van Bijnen AA, 
Heeringa P, Buurman WA. Inhibition of comple-
ment factor C5 protects against renal ischemia-
reperfusion injury: inhibition of late apoptosis and 
inflammation. Transplantation. 2003;75(3):375–382.

	 60.	Kastenbauer S, Koedel U, Becker BF, Pfister HW. 
Oxidative stress in bacterial meningitis in humans. 
Neurology. 2002;58(2):186–191.


