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When facing an immune response, viruses can either attempt to elude them or confront them. A new report demonstrates
that a lymphocytic choriomeningitis virus (LCMV) strain can suppress immune responses by targeting both development
and activation of DCs. Ironically, type I IFN released in response to LCMV infection contributes to the blockade of DC
development. The discovery of these immunosuppressive mechanisms provides new perspectives for the therapy of
chronic infections associated with immunosuppression.
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mal trafficking profile (23). DEC-205, MMR,
and DC-SIGN, but not langerin, contain the
YXXΦ motifs in cytoplasmic tails, suggesting
that CD1 and C-type lectins share the same
molecular sorting mechanisms for recycling
to particular subcompartments (21).

In summary, each C-type lectin transports
antigens to one or more specific subcompart-
ments where selected antigen presentation
molecules (i.e., MHC class I and II molecules
and CD1 isoforms) recycle preferentially (Fig-
ure 1). Thus, C-type lectins govern not only the
subcellular destination of newly captured anti-
gens, but also their presentation pathway. In
fact, geographic and functional coupling of
CD1b and MMR has been reported to mediate
CD1b-restricted presentation of mycobacteri-
al lipoglycan antigens (24). The striking diver-
sity in surface expression profiles of CD1 iso-
forms and C-type lectins among DC subsets
and in intracellular trafficking routes of both
classes of the receptors enables the DC system
to survey a wide variety of tissues and subcom-
partments for carbohydrate-bearing antigens
and to present distinct antigenic moieties to
respective effector T cell populations.
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When facing an immune response, viruses can either attempt to elude them
or confront them. A new report demonstrates that a lymphocytic chori-
omeningitis virus (LCMV) strain can suppress immune responses by target-
ing both development and activation of DCs (see the related article beginning
on page 737). Ironically, type I IFN released in response to LCMV infection
contributes to the blockade of DC development. The discovery of these
immunosuppressive mechanisms provides new perspectives for the therapy
of chronic infections associated with immunosuppression.
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Viruses have evolved multiple strategies to
counteract host immune responses. Noncy-
topathic lymphocytic choriomeningitis
virus (LCMV) employs several of these
strategies to successfully infect mice. Initial
immunosurveillance of LCMV infection is
mediated by CTLs. However, this response
may lead to selection of LCMV variants that

carry mutations in the relevant CTL epi-
topes and, therefore, can elude cytotoxic
responses (1, 2). Antibody responses are also
essential for long-term protection. Howev-
er, LCMV variants can evade humoral
responses with point mutations that encode
novel amino acids distorting the envelope
glycoprotein epitope recognized by neutral-
izing antibodies (3).

DCs as targets of LCMV
immunosuppression
Remarkably, LCMV not only eludes specific
immune surveillance, but can also actively
suppress immune responses. How is this
accomplished? In this issue of the JCI, Sevil-
la and colleagues elucidate the mechanism
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used by an immunosuppressive LCMV vari-
ant known as LCMV clone 13 (Cl 13) (4).
This viral variant was originally isolated from
the lymphoid tissues of neonatal mice with a
persistent LCMV infection induced by the
nonimmunosuppressive wild-type LCMV,
Armstrong 53b (ARM) (5). Initial studies
indicated that Cl 13 targets APCs, and, in
particular DCs (6). DCs are sentinels of the
immune system; they efficiently capture viral
antigens at the infection site and rapidly
migrate to the lymph nodes where they initi-
ate T cell responses (7). Thus, DCs are ideal
targets for viral immunosuppression. Sevilla
and colleagues demonstrate that Cl 13
adopts a surprising dual strategy for dis-
abling DCs: inhibiting both their develop-
ment and T cell stimulatory function (Figure
1). They clearly show that infection with Cl
13 impairs the expression of MHC and cos-
timulatory molecules on both spleen
myeloid (CD8α–) and lymphoid (CD8α+)
DCs. As a result, DCs do not efficiently stim-
ulate T cell proliferation ex vivo. DC function
remains impaired as long as LCMV infection

persists. Moreover, Cl 13 infects bone mar-
row precursors in vivo and in vitro, inhibit-
ing development and differentiation of
CD8α– and CD8α+ DCs.

Why does Cl 13 selectively affect DCs and
their precursors? LCMV has been shown to
bind α-dystroglycan (α-DG), a receptor for
extracellular matrix proteins that is highly
expressed on DCs and bone marrow precur-
sors (8). Notably, Cl 13 has a higher affinity
for α-DG than does wild-type ARM (8).
Thus, it is possible that Cl 13 competes with
extracellular matrix proteins for binding 
α-DG on DCs, thereby infecting them,
whereas ARM does not.

The paradoxical role of type I IFN
The notion that DCs are major targets of
immunosuppressive viruses is corroborat-
ed by several other types of infections (Fig-
ure 1). Measles virus (9, 10), herpes simplex
virus (11), vaccinia virus (12), and murine
cytomegalovirus (13) infect DCs and
impair their capacity to stimulate T cells.
Human immunodeficiency virus exploits

DCs for transmission to T cells (14).
Epstein-Barr virus inhibits the develop-
ment of DCs by inducing apoptosis of their
monocytic precursors without infecting
them (15). Furthermore, DCs are eliminat-
ed by CTL-mediated responses elicited by
some immunosuppressive LCMV variants
(16). In comparison with these immuno-
suppressive mechanisms, the inhibition of
DCs by Cl 13 reported by Sevilla and col-
leagues is remarkable in that the virus
impairs both DC immunostimulatory
function and the development of CD8α–

and CD8α+ DCs. Moreover, Sevilla and col-
leagues demonstrate that type I IFN, i.e.,
IFN-α and/or IFN-β, is necessary for Cl
13–mediated blockade of CD8α+ DC devel-
opment. Thus, type I IFN paradoxically
contributes to immunosuppression rather
than host defense. What is the mechanism?
Previous studies have shown that Cl 13, in
contrast to wild-type ARM, effectively trig-
gers secretion of type I IFN by DCs (17).
Thus, type I IFN may affect CD8α+ DC
development through an autocrine loop.

Figure 1
Immunosuppressive mechanisms of LCMV Cl 13. Cl 13 infects DC precursors and DCs, possibly using α-DG as the entry receptor. Cl 13 blocks
development of CD8α+ and CD8α– DCs from DC precursors (preDCs) and prevents immature DCs (iDCs) from becoming mature DCs (mDCs),
which express high levels of MHC, CD40, and B7, and initiate T cell responses. Blockade of CD8α+ DC development by Cl 13 requires type I IFN.
The sites of action of other immunosuppressive viruses interfering with DC functions or DC–T cell interactions are indicated. EBV, Epstein-Barr virus;
HSV, herpes simplex virus; VV, vaccinia virus; MCMV, murine cytomegalovirus; MV, measles virus.
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The paracrine action of type I IFN secreted
by natural IFN-producing cells (IPCs) (18)
in response to Cl 13 may also be involved.
Another intriguing observation reported by
Sevilla and colleagues is that Cl 13 inhibits
expression of MHC in DCs cultured from
bone marrow cells, although type I IFN
would be expected to increase at least MHC
class I expression. Whether Cl 13 directly
inhibits MHC synthesis by mechanisms
similar to those employed by herpes virus-
es (19) remains to be determined.

In conclusion, the Cl 13 infection model
underscores the central role of DCs in medi-
ating viral immunosuppression and describes
novel methods by which a virus can impair
DCs. It will be important to investigate the
influence of viral burden on these mecha-
nisms. Infection of bone marrow and sup-
pression of DC development may require
higher viral loads than infection of peripheral
DCs. Another important question is whether
Cl 13 immunosuppression involves other
APCs that may participate in anti-LCMV
immune responses, such as IPCs and macro-
phages. Certainly, Cl 13 infection will provide
a valuable model to test whether increasing
DC numbers, their maturation, and their T
cell stimulatory capacity can improve the effi-
cacy of vaccines in chronic infections associ-
ated with immunosuppression.
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The anatomy of an arrhythmia
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Computer simulations are potentially effective approaches to unraveling the
causes of lethal heart rhythm disorders. In this issue of the JCI, Xie et al. (see
the related article beginning on page 686) have embedded a well-characterized
dynamic mechanism for arrhythmia development in an anatomically realis-
tic computer model of the heart. Their demonstration that this simple mech-
anism governs the behavior of the complex model may provide a new target
for strategies to prevent sudden death.
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Ventricular fibrillation and sudden
cardiac death
The primary mechanical event in the
heart—the development of contractile
force—is triggered by an electrical event, the

cardiac action potential, through the pro-
cess of excitation-contraction coupling. For
the heart to contract efficiently and con-
tinuously over the life span of an individu-
al, which may encompass many millions of
heartbeats, electrical activation of the heart
must occur repetitively in the proper
sequence. Orderly electrical activation is
accomplished by the sequential propaga-
tion of action potentials along the anatom-
ically defined structures shown in the right
panel of Figure 1. The heartbeat begins in
the sinoatrial (SA) node with a sponta-

neously generated action potential. Propa-
gation of the SA nodal impulse creates
wavefronts of electrical excitation that ini-
tially spread outward to atrial myocardium
and then converge before crossing the atri-
oventricular (AV) node and entering the
specialized conducting system, which con-
sists of the bundle branches and an arboriz-
ing network of Purkinje cells. The Purkinje
system then distributes activation rapidly
and widely to ventricular myocardium.

If the sequence of electrical activation
becomes disorganized, the mechanical activ-
ity of the heart is compromised. In the most
extreme case of disorganization, ventricular
fibrillation (VF), the electrical activity of the
ventricles becomes so rapid and irregular
that coordinated contraction ceases, causing
blood pressure to plummet and death to
ensue within minutes. Despite decades of
intensive investigation, sudden death from

 


